首页 >> 宝藏问答 >

共线向量一定在同一直线上吗(共线向量)

2024-08-16 18:30:50

问题描述:

共线向量一定在同一直线上吗(共线向量),有没有大神路过?求指点迷津!

最佳答案

推荐答案

2024-08-16 18:30:50

大家好,小东方来为大家解答以上的问题。共线向量一定在同一直线上吗,共线向量这个很多人还不知道,现在让我们一起来看看吧!

1、如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。

2、 证明: 1)充分性,对于向量 a(a≠0)、b,如果有一个实数λ,使 b=λa,那么由 实数与向量的积的定义 知,向量a与b共线。

3、 2)必要性,已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即 ∣b∣=m∣a∣。

4、那么当向量a与b同方向时,令 λ=m,有 b =λa,当向量a与b反方向时,令 λ=-m,有 b=-λa。

5、如果b=0,那么λ=0。

6、 3)唯一性,如果 b=λa=μa,那么 (λ-μ)a=0。

7、但因a≠0,所以 λ=μ。

8、 证毕。

9、[编辑本段]推论 推论1 两个向量a、b共线的充要条件是:存在不全为零的实数λ、μ,使得 λa+μb=0。

10、 证明: 1)充分性,不妨设μ≠0,则由 λa+μb=0 得 b=(λ/μ)a。

11、由 共线向量基本定理 知,向量a与b共线。

12、 2)必要性,已知向量a与b共线,若a≠0,则由共线向量基本定理知,b=λa,所以 λa-b=0,取 μ=-1≠0,故有 λa+μb=0,实数λ、μ不全为零。

13、若a=0,则取μ=0,取λ为任意一个不为零的实数,即有 λa+μb=0。

14、 证毕。

15、 推论2 两个非零向量a、b共线的充要条件是:存在全不为零的实数λ、μ,使得 λa+μb=0。

16、 证明: 1)充分性,∵μ≠0,∴由 λa+μb=0 可得 b=(λ/μ)a。

17、由 共线向量基本定理 知,向量a与b共线。

18、 2)必要性,∵向量a与b共线,且a≠0,则由 共线向量基本定理 知,b=λa;又∵b≠0,∴λ≠0; 取 μ=-1≠0,就有 λa+μb=0,实数λ、μ全不为零。

19、 证毕。

20、 推论3 如果a、b是两个不共线的向量,且存在一对实数λ、μ,使得 λa+μb=0,那么λ=μ=0。

21、 证明:(反证法) 不妨假设μ≠0,则由 推论1 知,向量a、b共线;这与已知向量a、b不共线矛盾,故假设是错的,所以λ=μ=0。

22、 证毕。

23、 推论4 如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一实数λ,使得 向量PC=(1-λ)向量PA+λ向量PB。

24、(其中,向量AC=λ向量AB)。

25、 证明: ∵三点P、A、B不共线,∴向量AB≠0, 由 共线向量基本定理 得, 点C在直线AB上 <=> 向量AC 与 向量AB 共线 <=> 存在唯一实数λ,使 向量AC=λ·向量AB ∵三点P、A、B不共线,∴向量PA 与 向量PB 不共线, ∴向量AC=λ·向量AB <=> 向量PC-向量PA=λ·(向量PB-向量PA) <=> 向量PC=(1-λ)向量PA+λ·向量PB。

26、 证毕。

27、 推论5 如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一一对实数λ、μ,使得 向量PC=λ向量PA+μ向量PB。

28、(其中,λ+μ=1) 证明: 在推论4 中,令 1-λ=μ ,则λ+μ=1,知: 三点P、A、B不共线 <=> 点C在直线AB上的充要条件是:存在实数λ、μ,使得向量PC=λ向量PA+μ向量PB。

29、(其中,λ+μ=1) 下面证唯一性,若 向量PC=m向量PA+n向量PB,则 m向量PA+n向量PB=λ向量PA+μ向量PB, 即,(m-λ)向量PA+(n-μ)向量PB=0, ∵三点P、A、B不共线,∴向量PA 与 向量PB 不共线, 由 推论3 知,m=λ,n=μ。

30、 证毕。

31、 推论6 如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在不全为零的实数λ、μ、ν,使得 λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0。

32、 证明: 1)充分性,由推论5 知,若三点P、A、B不共线,则 点C在直线AB上 <=> 存在实数λ、μ,使得 向量PC=λ向量PA+μ向量PB(其中,λ+μ=1)。

33、 取ν=-1,则有:λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0,且实数λ、μ、ν不全为零。

34、 2)必要性,不妨设ν≠0,且有:λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0,则 向量PC=(λ/ν)·向量PA+(μ/ν)·向量PB,(-λ/ν)+(-μ/ν)=1。

35、由推论5 即知,点C在直线AB上。

36、 证毕。

37、 推论7 点P是直线AB外任意一点,那么三不同点A、B、C共线的充要条件是:存在全不为零的实数λ、μ、ν,使得 λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0。

38、 证明:(反证法) ∵点P是直线AB外任意一点,∴向量PA≠0,向量PB≠0,向量PC≠0,且 向量PA、向量PB、向量PC两两不共线。

39、 由推论6 知,实数λ、μ、ν不全为零, 1)假设实数λ、μ、ν中有两个为零,不妨设λ≠0,μ=0,ν=0。

40、则 λ向量PA=0,∴向量PA=0。

41、这与向量PA≠0。

42、 2)假设实数λ、μ、ν中有一个为零,不妨设λ≠0,μ≠0,ν=0。

43、则 λ向量PA+μ向量PB=0,∴向量PA=(μ/λ)·向量PB,∴向量PA 与 向量PB共线,这与向量PA 与 向量PB不共线矛盾。

44、 证毕。

45、[编辑本段]共线向量定理 定理1 ⊿ABC中,点D在直线BC上的充要条件是 其中 都是其对应向量的数量。

46、 证明:有推论5 即可证得。

47、 定理2 ⊿ABC中,点D在直线BC上的充要条件是 其中 都是有向面积。

48、通常约定,顶点按逆时针方向排列的三角形面积为正,顶点按顺时针方向排列的三角形面积为负。

49、 证明:由定理1 即可得证。

本文到此分享完毕,希望对大家有所帮助。

  免责声明:本答案或内容为用户上传,不代表本网观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。 如遇侵权请及时联系本站删除。

 
分享:
最新文章
  • 【卢姓的来源】卢姓是中国常见的姓氏之一,历史悠久,源远流长。根据历史文献和族谱记载,卢姓的来源主要有以...浏览全文>>
  • 【龙眼的原产地是在中国吗】龙眼,又称桂圆,是一种常见的水果,广泛种植于亚洲热带和亚热带地区。关于龙眼的...浏览全文>>
  • 【龙眼的成熟时间是几月龙眼是几月份成熟】龙眼是一种常见的热带水果,因其甜美的口感和丰富的营养价值而受到...浏览全文>>
  • 【龙脷叶功效有哪些】龙脷叶,又称“龙利叶”或“龙舌叶”,是一种常见的中药材,主要来源于萝藦科植物龙脷叶...浏览全文>>
  • 【龙利鱼做法】龙利鱼是一种肉质鲜嫩、营养丰富的海鱼,近年来在家庭餐桌和餐厅中越来越受欢迎。由于其刺少、...浏览全文>>
  • 【六一节祝福语简短】六一儿童节是孩子们最期待的节日之一,它象征着快乐、纯真与希望。在这一天,无论是家长...浏览全文>>
  • 【榴莲保存方法】榴莲是一种味道独特、营养丰富的热带水果,但因其果肉柔软、易变质,保存起来需要一定的技巧...浏览全文>>
  • 【流行的网名】在当今网络时代,网名已成为人们在网络社交中表达个性、展示态度的重要方式。无论是游戏、社交...浏览全文>>
  • 【靈活词语意思是什么】“靈活”是一个常见的中文词语,常用于描述事物或人的适应能力、变通性。它在不同语境...浏览全文>>
  • 【酃绿的读音】“酃绿”是一个较为少见的词语,常见于茶叶、地名或文化背景中。为了帮助读者准确掌握其读音和...浏览全文>>